1 模糊数学的基本概念
1.1 模糊数学简介
1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并在国际期刊《Information and Control》发表了第一篇用数学方法研究模糊现象的论文“Fuzzy Sets”(模糊集合),开创了模糊数学的新领域。
模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。
模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即从精确现象到模糊现象。
实际中,我们处理现实的数学模型可以分成三大类:
第一类是确定性数学模型,即模型的背景具有确定性,对象之间具有必然的关系。
第二类是随机性的数学模型,即模型的背景具有随机性和偶然性。
第三类是模糊性模型,即模型的背景及关系具有模糊性。
1.2 基本概念
1.2.1 模糊集和隶属函数
定义 1 论域X 到[0,1] 闭区间上的任意映射
:
都确定X 上的一个模糊集合 A , μA 叫做 A 的隶属函数, μA (x) 叫做x 对模糊集 A 的 隶属度,记为:
A ={ }
使 的点x0 称为模糊集 A 的过渡点,此点最具模糊性。
显然, 模糊集合 A 完全由隶属函数 μA 来刻画, 当 时, A 退化为一 个普通集。
1.2.2 隶属函数的确定方法
模糊数学的基本思想是隶属度的思想。应用模糊数学方法建立数学模型的关键是建 立符合实际的隶属函数。这里为几种常用的确定隶属函数的方法。
2.1 模糊数学(1)模糊统计方法
模糊统计方法是一种客观方法, 主要是基于模糊统计试验的基础上根据隶属度的客 观存在性来确定的。所谓的模糊统计试验包含以下四个要素:
i) 论域;
ii)X 中的一个固定元素;
iii) X 中一个随机变动的集合 A* (普通集);
iv)X 中一个以作为弹性边界的模糊集 ,对 A 的变动起着制约作用。其中 ,或者 ,致使 对 的关系是不确定的。
假设做n 次模糊统计试验,则可计算出
对 的隶属频率=
实际上, 当n 不断增大时, 隶属频率趋于稳定, 其频率的稳定值称为x0 对 A 的隶属度, 即
(2)指派方法
指派方法是一种主观的方法, 它主要依据人们的实践经验来确定某些模糊集隶属函 数的一种方法。
如果模糊集定义在实数域R 上,则模糊集的隶属函数称为模糊分布。所谓指派方 法就是根据问题的性质主观地选用某些形式的模糊分布, 再根据实际测量数据确定其中 所包含的参数,常用的模糊分布如表 1 所示。
实际中,根据问题对研究对象的描述来选择适当的模糊分布:
① 偏小型模糊分布一般适合于描述像“小,少,浅,淡, 冷,疏,青年”等偏小 的程度的模糊现象。
② 偏大型模糊分布一般适合于描述像“大,多,深,浓, 热,密,老年”等偏大 的程度的模糊现象。
③ 中间型模糊分布一般适合于描述像“中,适中,不太多,不太少, 不太深,不 太浓,暖和,中年等处于中间状态的模糊现象。
但是, 表 1 给出的隶属函数都是近似的, 应用时需要对实际问题进行分析, 逐步修改进行完善,最后得到近似程度更好的隶属函数。
(3)其它方法
在实际应用中,用来确定模糊集的隶属函数的方法是多种多样的,主要根据问题的实际意义来确定。譬如,在经济管理、社会管理中,可以借助于已有的“客观尺度”作为模糊集的隶属度。下面举例说明。
如果设论域 X 表示机器设备,在 X 上定义模糊集 A =“设备完好”,则可以用“设备完好率”作为 A 的隶属度。如果 X 表示产品,在 X 上定义模糊集 A =“质量稳定”,则可以用产品的“正品率”作为 A 的隶属度。如果 X 表示家庭,在 X 上定义模糊集 A=“家庭贫困”,则可以用“Engel 系数=食品消费/总消费”作为 A 的隶属度。
另外,对于有些模糊集而言,直接给出隶属度有时是很困难的,但可以利用所谓的“二元对比排序法”来确定,即首先通过两两比较确定两个元素相应隶属度的大小,然后用数学方法加工处理得到所需的隶属函数。